Das Dörfl braucht erneuerbares Heizen im Winter mittels Erdwärme

Die Preisentwicklung von fossilen Energieträgern wie Erdgas und der Druck aus ökologischen und politischen Gründen vom Erdgas unabhängig zu werden unterstützen begünstigen die unten dargestellten Entwicklungen. Schließlich wird das Heizen mit Erdgas 2040 verboten. Spätestens dann muss also eine Umstellung auf erneuerbare Energie erfolgen. Wenn wir die Investition in die Umstellung schon heute vorzunehmen sparen wir 18 Jahre Ausgaben für Erdgas ein.

Daher soll das Dörfl in Zukunft mit Erdwärme heizen.

Dies geschieht mittels:

  • Erdwärmesonden,
  • Wärmepumpe und
  • Flächenheizungen in möglichst gut thermisch sanierten Wohnhäusern.



Die Wärmeleitfähigkeit der Erde im Dörfl beträgt 2W/m/K

Erdwärmesondenfeld


Für das Dörfl bräuchte man aber ein ganzes Erdwärmesondenfeld (z.B. unter dem Pfarrgarten), denn viele Häuser können mangels Garten keine Erdsonden installieren.

Hier wäre typisch

  • Abstand der Sonden mindestens 7 m
  • Pro 5 kW Heizleistung (1500 Vollaststunden) 1 Sonde mit 70-100m
  • Ca. 2 Sonden pro Einfamilienhaus
  • An der Oberfläche ist das Sondenfeld unsichtbar




Dabei gibt es ein gravierendes Problem - die Auskühlung der Erde

   

Die Erde wird bei einzelnen Erdwärmesonden und stärker noch im Erdwärmesondenfeld durch den stetigen Wärmentzug über die Jahre ausgekühlt

Der saisonale thermische Speicher kühlt im Sommer heizt im Winter

Kühlung im Sommer durch Verwendung der Heizflächen kombiniert mit Wärmegewinnung für den Winter

Durch die globale Erwärmung sinkt der Wärmebedarf im Winter durch Anhebung der Minimaltemperaturen und Verkürzung der Heizperiode. Gleichzeitig werden die Maximaltemperaturen steigen und die Zahl der Hitzetage steigen. Somit wird die Effektivität der saisonalen Speicherung von Wärme aus Kühlung im Sommer für die Heizung im Winter im Laufe der nächsten 25 Jahre verbessert.

  • Die Wärmepumpe nimmt das kühle Wasser aus dem Erdsondenfeld über das Nahwärmenetz auf.
  • Das kühle Wasser durchströmt die Heizflächen, nimmt die Wärmeenergie der Räume auf und kühlt sie so.
  • Die Wärme wird über das Nahwärmenetz in die Erdwärmesonden gepumpt und an das Erdreich abgegeben.
  • Die Raumtemperatur wird so im Sommer um 3° gesenkt
  • der subjektive Effekt ist noch stärker
  • und der Erdwärmespeicher wird für effizientes Heizen im Winter aufgewärmt
  • [die Kühlung im Sommer braucht 3,8 mal weniger Strom als eine Klimaanlage]

  [Quelle]

Die Eignung der Geophysik für eine saisonale thermische Energiespeicherung in einem Erdwärmesondenfeld (engl. Borehole thermal energy storage BTS) hängt von drei Faktoren ab:

  1. der Wärmekapazität, die, wenn sie zu niedrig ist, das Volumen des Speichers vergrößert und damit weniger wirtschaftlich macht
  2. der Wärmeleitfähigkeit, die wenn sie zu hoch ist, den Verlust der Wärme an der Oberfläche des thermischen Speichers begünstigt
  3. Grundwasserströmen im Tiefenbereich von 15-70m, die zu Konvektionsverlusten der gespeicherten Wärme führt

Im Dörfl ist die Wärmeleitfähigkeit im Untergrund bis 100m Tiefe im Erdwärmepotentialkataster mit 2,05 +-0,2 W/m/K angegeben. Was eine mittlere bis gute Voraussetzung schafft.

Für die saisonale Erdspeicherung gibt es bereits Praxisbeispiele

  • Die Bohrtiefe wird durch Grundwasser begrenzt.
  • eine höhere Zahl von Sonden bedeutet eine bessere Relation von Volumen zu Oberfläche des Erdspeichers und steigert die Effizienz
  • Die Erde wird im Sommer z.B. auf bis zu 55°C erwärmt und im Winter bis auf bis zu 15°C mithilfe der Wärmepumpen entladen.
  • Praxisbeispiele
    • Crailsheim: 60 Sonden 55m tief 3 m Abstand in 30m Kreis
    • Braedstrup: 48 Sonden 45m tief für 1481 Einwohner 39,633 MWh

   

Literatur:

Seasonal Thermal Energy Storage - Critical Review

Wärmegewinnung und Kühlung im Sommer durch künstliche Beregnung der Dachflächen

Geeignete Gebäude sind vor allem die denkmalgeschützten Gebäude

Wir haben im Dörfl 11 denkmalgeschützte Gebäude mit teils sehr großen Dachflächen. Der Denkmalschutz erlaubt i.d.R. keine PV-Panels oder Solarthermischen Kollektoren.

Tabelle: Potential denkmalgeschützte Gebäude im Dörfl nach dem Solarpotentialkataster
Adresse Historie Dachfläche sehr gut m2 Dachfläche gut m2 PV kWh/a Solartherm kWh/a
Bloschg 1 Bürgerhaus mittelalt. 85 218 58290 254173
Bloschg 2 Pfarrhof 39 166 39469 172105
Bloschg 3 Bürgerhaus 0 134 23660 103169
Georgsplz 1 Mesnerhaus 6 103 20750 90478
Georgsplz 2 15.JH und 17. JH 12 92 20294 88492
Jungherrnsteig 2 ehem Volksschule 187 94 60691 264641
Wigand 41 Pfarrkirche 2 72 13606 59329
Zwillinggasse 1 Maria Theresia-Schlösschen 110 280 76035 331546
Wigand 25 ehem Feuerwache 0 87 15385 67088
Wigand 37 Ehem. Freihof Stifts KN 63 192 49921 217679
Wigand 39 Bürgerhaus ehem Schule 9 49 11007 47996
Summe denkmalgeschützte G. 513 1487 389108 1696696

Damit wir einen Teil der Wärme auf den Dächern dieser Gebäude dennoch für einen Beitrag zur Klimaneutralität nutzen und gleichzeitig die Dachwohnungen vor der Sonnenhitze schützen können, haben wir ein innovatives, in dieser Form noch nicht veröffentlichtes Verfahren erdacht: wir wollen die sonnenbeschienen Dächer künstlich beregnen!

TECHNIK

 
Beispiel für Dachkühlung mit Regenwasser
  • In der hauseigenen Zisterne gesammelte Regenwasser wird auf das Dach gepumpt
  • Regenwasser ist kalkfrei und hinterlässt keine Flecken am Dach, die nicht nur unschön wären, sondern auch das Licht reflektieren würden
  • das Wasser wird über Tropfschläuche gezielt in die Dachziegelsenken geleitet oder bei Flachziegeln ca. alle 5cm ein Loch
  • dort kühlt es die Dachziegel und nimmt die Sonnenwärme auf
  • die Temperatur des Wassers in Regenrinne und Fallrohr wird über die Pumpleistung geregelt und optimal gehalten
  • so wird immer nur die im Tagesverlauf ausreichend sonnenbeschienenen Dachflächen künstlich beregnet
  • das gewärmte Wasser wird in den Fallrohren durch Fallrohrfilter abgezweigt und über Rohre zum Wärmetauscher geleitet
  • so wird die Wärme für das Haus zur Warmwasserbereitung zur Verfügung gestellt
  • und die meiste Wärme über das Nahwärmenetz abführt.
  • Nach dem Wärmetauscher fließt das Wasser zurück in die Zisterne.
  • Natürlicher Regen wird ebenfalls über die Rohre in die Zisterne geleitet, um Verluste durch Verdunstung auf dem Dach von bis zu 5 Litern pro Stunde auszugleichen. Der natürliche Regen wird aber über ein elektromagnetisches Ventil am Wärmetauscher vorbei in die Zisterne geleitet.


Dabei entstehen eine Reihe von Verlusten, die sich in Modellrechnungen abschätzen lassen:
  • 33% Reflexion (Albedo von roten Dachziegeln)
  • 68% Abstrahlungsverlust nach oben
  • 18% Verdunstung bei 35°C mittlerer Temperatur des Wassers auf dem Dach (Temperatur dürfte von 25°C am First auf 40°C in der Dachrinne steigen)
Weitere Einschränkungen
  • ca. 15% Verlust entstehen im Wärmetauscher
  • und ca. 27-35% Speicherverluste
  • im Winter ist die Methode wenig nützlich
Beispiel:
  • Bei 110m2 südgerichtetem Dachanteil
  • müssen im Sommer mittags 0,6 Liter/s Wasser auf das Dach gepumpt werden und
  • die Zisterne muss mindestens 500 Liter fassen
  • Die Tauchpumpe muss einen Druck leisten der von der Firsthöhe abhängt (>1bar/10m). Der Durchfluss hängt von der Dachfläche ab. Bei einem 10m hohen Dach und einem Wirkungsgrad von 0,8 wären das 0,6kg*9,81m/s2 *10m / 0,8 = 73 W peak. Kein Problem zum Zeitpunkt maximalen Solarstroms.
  • es werden 25kW-peak thermisch produziert
Kostenschätzung:
  • Tropfschläuche mit Montage <500€
  • 2 Fallrohrfilter 100€
  • Rohrleitungen mit Verlegen 500€
  • elektromechanisches Ventil 100€
  • 2 Wärmetauscher in Serie 10 kW 1000€
  • 2 Tauchpumpen 100€
  • Sensoren und Regelelektronik 250€
  • Summe 2500€

Links zur Dachkühlung:

Ganzjährige Wärmegewinnung mit Solarthermie Kollektoren oder PVT Hybriden mit Photovoltaik

Die Verwendung von PVT-Panels nutzt die begrenzte Dachfläche im Dörfl optimal. PVT-Panels sind teurer als PV-Panels oder solartherme Kollektoren. Sie erlauben die Wärmegewinnung für Warmwasser und einen Teil der Heizenergie auch im Winter. Die restliche Wärmeenergie muss über das Nahwärmenetz auf dem Erdwärmsondenfeld entnommen werden und mittels Wärmepumpen auf das Temperaturniveau der Vorlauftemperatur gehoben werden. Dabei kann auch im Winter zum Teil der in der PV-Anlage gewonnene Sonnenstrom herangezogen werden.

Potential geeigneter Dachflächen ohne Denkmalschutz im Dörfl

Tabelle: Potential im Solarpotentialkataster für nicht denkmalgeschützte Gebäude im Dörfl
Adresse Dachfläche sehr gut m2 Dachfläche gut m2 PV kWh/a Solartherm kWh/a
Bloschg 5 9 124 24246 105724
Bloschg 7 21 175 37036 161492
Bloschg 9 60 189 48283 210538
Bloschg 11 35 91 24765 107987
Bloschg 13 14 114 24047 104855
Geigerin 2 0 146 26965 117580
Geigerin 4 7 121 23897 104202
Geigerin 6/1 0 20 3405 14847
Geigerin 6/2 0 28 5029 21929
Georgsplz 3 20 97 22313 97295
Georgsplz 4 13 158 31655 138030
Heiligenstädterstr 331/1 2 44 8647 37703
Heiligenstädterstr 331/2 16 87 20361 88782
Heiligenstädterstr 331/3-4 3 136 26411 115163
Heiligenstädterstr 333 0 46 8431 36761
Heiligenstädterstr 335 0 34 5757 25105
Heiligenstädterstr 337 0 16 2713 11831
Heiligenstädterstr 351 39 104 28113 122585
Heiligenstädterstr 357 0 150 28658 124962
Heiligenstädterstr 359 18 39 10875 47421
Kuchelauer Hafenstraße 2 16 502 97844 426644
Waldbachsteig 1 0 27 4440 19361
Wigand 11 0 40 6880 30001
Wigand 22 0 104 17784 77546
Wigand 23 0 32 5346 23310
Wigand 27 0 148 27064 118012
Wigand 5 0 345 62316 271727
Wigand 7 0 41 7559 32962
Wigand 9 21 129 29379 128108
Summe 294 3287 670219 2922463

Literatur:

Photovoltaik-Solarthermie Hybrid (PVT) eine Einführung auf Englisch

es gibt bereits gute kommerzielle PVT Panels

Datei:EUWID CO² neutrale Quartierloesung mit PV-ISIETherm.pdf