Erdwärmsonden und saisonale Speicherung: Unterschied zwischen den Versionen

Aus Wiki Klimadörfl
Wechseln zu:Navigation, Suche
Zeile 112: Zeile 112:
 
Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst.
 
Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst.
  
Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| <ref named="Schmidt 2019"> Schmidt & Sorensen 2018 ''Monitoring Results from Large Scale Heat storages for District Heating in Denmark'']]] [https://planenergi.dk/wp-content/uploads/2018/05/Schmidt-and-Soerensen_Monitoring-Results-from-Large-Scale-Heat-storages-....pdf]
+
Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| <ref name="Schmidt 2019"> Schmidt & Sorensen 2018 ''Monitoring Results from Large Scale Heat storages for District Heating in Denmark'']]] [https://planenergi.dk/wp-content/uploads/2018/05/Schmidt-and-Soerensen_Monitoring-Results-from-Large-Scale-Heat-storages-....pdf]
  
 
====Geophysikalische Voraussetzungen im Untergrund:====
 
====Geophysikalische Voraussetzungen im Untergrund:====

Version vom 12. März 2022, 16:37 Uhr

Der hohe Primärenergiebedarf im Dörfl hat auch mit dem hohen Anteil an Altbauten, die vielfach noch unsaniert sind, zu tun

Anforderungen heizenergiebedarf 20140311.jpg

Zudem ist die Wohnfläche pro Einwohner teils hoch

Wir wissen bisher aber nur von einigen Häusern den Gas- und Stromverbrauch.

Wir müssen vor größeren Investitionen erst einmal den Iststand beim Verbrauch im Dörfl kennen und uns beraten lassen welche Einsparungen durch Verbesserungen in den Häusern durch die Eigentümer wirtschaftlich sinnvoll und möglich sind.

Wärme ist der wichtigste und aufwändigste Investitionsbereich auf dem Weg zur Klimaneutralität im Dörfl

Wärme als Niedertemperaturwärme plus als Fernwärme verursacht in Wien den größten Anteil an CO2 Emissionen.

Wiener Endenergiebedarf 19.pngCO2 Emissionen in Wien per Sektor 2019.png

Warmwasserbereitung und Heizen (und Kühlen) von Wohnraum sind auch der größte Verbraucher von fossilem Brennstoff im Dörfl. Hier entstehen also die meisten CO2 Emissionen.

Von allen Sektoren erfordert der Wärmebereich (Raumwärme und Warmwasser) die größten Investitionen innerhalb Wiens zur Erreichung der Dekarbonisierungsziele.

Investitionen im Wiener Energiesystem zur Erreichung der klimaneutralität bis 40.png

Im Gegensatz zur Gewinnung von erneuerbaren Produktion von Strom, kann die Wärmegewinnung nicht ausgelagert werden. Sie muss im Dörfl stattfinden.

Wie kann das funktionieren?

Wie für die Stadt Wien vorgeschlagen kann das nur durch eine Kombination von Maßnahmen erfolgen.

  1. Mit einer thermischen Sanierung der Gebäude soweit ökonomisch vertretbar, um den Heizenergiebedarf zu senken.
  2. Umstellung der Heizung.


Die Optionen zum klimaneutralen Heizen sind:

  1. Bioenergie in Form von Pellets und Hackschnitzelheizung wird an Grenzen stoßen und sollte der Plan B sein.
  2. Solarthermie-Kollektoren damit kann man auch im Winter Wärme erzeugen, aber der Großteil des Wärmebedarfs fällt im Winter an, wenn nur 25% vom Jahresertrag gewonnen werden können. Eine Überdimensionierung der Kollektoren für eine Deckung des Heizenergiebedarfs im Winter wäre unökonomisch und aufgrund der begrenzten geeigneten Dachflächen im Dörfl unmöglich.
  3. Nutzung von Erdwärme mittels Wärmepumpen wird daher eine große Rolle spielen müssen.


Wir wollen hier aufzeigen, dass der effektivste Weg die Optionen 2 und 3 kombiniert. Dabei wird von überschüssige Wärme aus dem Sommerhalbjahr in einen saisonalen Wärmespeicher gepumpt und im Winter zum Heizen mittels Wärmepumpe verwendet.

Im Dörfl stehen keine großen Flächen für große thermale Wasserspeicher zur Verfügung, daher wird hier eine Speicherung in einem Erdwärmesondenfeld vorgeschlagen.

Das Dörfl braucht erneuerbares Heizen im Winter mittels Erdwärme

GZEW3 Bild1.png


Die Preisentwicklung von fossilen Energieträgern wie Erdgas und der Druck aus ökologischen und politischen Gründen vom Erdgas unabhängig zu werden, begünstigen die unten dargestellten Maßnahmen zur Energiegewinnung und Speicherung. Schließlich wird das Heizen mit Erdgas 2040 verboten. Spätestens dann muss also eine Umstellung auf erneuerbare Energie erfolgen. Wenn wir die Investition in die Umstellung schon heute vorzunehmen sparen wir 18 Jahre Ausgaben für Erdgas ein.

Daher soll das Dörfl in Zukunft mit Erdwärme heizen.

Dies geschieht mittels:

  • Erdwärmesonden,
  • Wärmepumpe und
  • Flächenheizungen in möglichst gut thermisch sanierten Wohnhäusern.



Die Wärmeleitfähigkeit der Erde im Dörfl beträgt 2W/m/K

Erdwärmesondenfeld ohne Regeneration

GZEW3 Bild2.png


Für das Dörfl bräuchte man aber ein ganzes Erdwärmesondenfeld (z.B. unter dem Pfarrgarten), denn viele Häuser können mangels Garten keine Erdsonden installieren.

Hier wäre typisch

  • Abstand der Sonden beträgt für eine reine Extraktion von Wärme mindestens 7 m
  • Pro 5 kW Heizleistung (1500 Vollaststunden) 1 Sonde mit 70-100m
  • Ca. 2 Sonden pro Einfamilienhaus
  • An der Oberfläche ist das Sondenfeld unsichtbar




Dabei gibt es ein gravierendes Problem - die Auskühlung der Erde

GZEW3 Bild3.png GZEW3 Bild4.png

Die Erde wird bei einzelnen Erdwärmesonden und stärker noch im Erdwärmesondenfeld durch den stetigen Wärmentzug über die Jahre ausgekühlt

Kühlen im Sommer und Heizen im Winter vermittels saisonaler thermischer Speicherung im Erdwärmesondenfeld

Der Bedarf für Kühlung steigt und damit die Kosten

Strombedarf und Dauer Klimatisierung steigt bis 2040.png

Schon heute verschlingt eine Klimaanlage mit 2,5 kW Leistung am Tag gerne 10 € für Stromkosten und das bezieht die Installationskosten noch gar nicht ein. Das Kühlen von Gebäuden wird bis 2040 für immer mehr Stunden pro Jahr nötig und der Stromverbrauch für Klimaanlagen würde auf das 3,4 fache bis 2040 steigen.

Kühlung im Sommer durch Verwendung der Heizflächen kombiniert mit Wärmegewinnung für den Winter

Durch die globale Erwärmung sinkt der Wärmebedarf im Winter durch Anhebung der Minimaltemperaturen und Verkürzung der Heizperiode. Gleichzeitig werden die Maximaltemperaturen steigen und die Zahl der Hitzetage steigen. Somit wird die Effektivität der saisonalen Speicherung von Wärme aus Kühlung im Sommer für die Heizung im Winter im Laufe der nächsten 25 Jahre verbessert.

Be- und entladen des Erdsonden-Wärmespeicher in Crailsheim im Jahresverlauf

  • Die Wärmepumpe nimmt das kühle Wasser aus dem Erdsondenfeld über das Nahwärmenetz auf.
  • Das kühle Wasser durchströmt die Heizflächen, nimmt die Wärmeenergie der Räume auf und kühlt sie so.
  • Die Wärme wird über das Nahwärmenetz in die Erdwärmesonden gepumpt und an das Erdreich abgegeben.
  • Die Raumtemperatur wird so im Sommer um 3° gesenkt
  • der subjektive Effekt ist noch stärker
  • und der Erdwärmespeicher wird für effizientes Heizen im Winter aufgewärmt
  • [die Kühlung im Sommer braucht 3,8 mal weniger Strom als eine Klimaanlage]

Energiesparendes Heizen im Winter und Kühlen im Sommer [Quelle]

Technik der Speicherung im Erdwärmesondenfeld

Hierzu gibt es von der International Energy Association (IEA) eine detaillierte Dokumentation [1] . Im Reviewartikel zu BTES von Skarphagen et al 2019 wird auf Designelemente zum Wärmetransfer fokussiert [2]. Am 9.3.2021 bekamen wir eine persönliche allgemeine Beratung zum Thema [3].

Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst.

Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| Referenzfehler: Für ein <ref>-Tag fehlt ein schließendes </ref>-Tag. Der Gasbrenner (GB) als Wärmequelle ist ökologisch die schlechterste Lösung. Die Verwendung von Kraftwärmekopplung zur Stromproduktion (combined heat and power = CHP) ist nur in einer kleinen Quantität und nur in Kombination mit BTES und STC sinnvoll. Der ökologische Fußabdruck wurde dabei als CO2-Bilanz im Lebenszyklus (also Einschließlich der Produktion) auf der Horizontalachse (global warming potential = GWP) angegeben. Bei den Kosten werden Kreditkosten für die Investition und Unterhaltskosten berücksichtigt (levelized cost of heat = LCOH). In dieser Abbildung werden die Ergebnisse ohne staatliche Förderung angegeben: Paretodiagramm LCOH vs GWP Evo.png

Bei Einbeziehung der staatlichen Förderung wird die STC+BTES Kombination auch wirtschaftlich Gasbrennern überlegen: Paretodiagramm LCOH vs GWP Evo sub.png

Für einen definierten Heizenergiebedarf in einem Fernwärmeverbund gibt es optimale Kombinationen von der Fläche der Solarthermie-Kollektoren (STC) und der Tiefe der Bohrungen für die Erwärmesonden (BTES) sowohl für die Wirtschaftlichkeit (LCOH) als auch die Ökologie (GWP). STC area vs BTES depth on LCOH and GWP.png

Eine Komponente Kraftwärmekopplung verbessert die Wirtschaftlichkeit

Wie die obige Analyse aufzeigt, würde eine kleine Komponente Kraftwärmekopplung die LCOH also die Wirtschaftlichkeit etwas verbessern. Der Beitrag sollte laut der obigen Modellierung ca. 14% des gesamten Heizenergiebedarfs betragen. Wenn diese bis 2030 mit Erdgas und danach mit Wasserstoff erfolgt, wäre der ökologische Nachteil gering und zeitlich begrenzt. Die damit verbundene Stromproduktion könnte den Stromverbrauch durch die Wärmepumpen decken helfen.

Literatur

  1. Mangold D, Deschaintre L. IEA SHC Task 45B Report der International Energy Agency, Solar Heating and Cooling Programme, ausgeführt von Solites, Stuttgard IEA SHC Task45B Report
  2. Skarphagen H, Banks D, Frengstad BS, Gether H. Design Considerations for Borehole Thermal Energy Storage (BTES): A Review with Emphasis on Convective Heat Transfer. Hindawi Geofluids (Wiley) 2019 doi:10.1155/2019/4961781
  3. DI Dr. E. Haslinger Senior Scientist für Integrated Energy Systems im Austrian Institute of Technology GmbH, Wien

Seasonal Thermal Energy Storage - Critical Review

Beim erneuerbaren Energieprojekt Krieau werden im Viertel Zwei seit 3 Jahren 2.350 Menschen auf 80.000 m² mit nachhaltiger Wärme und Kälte versorgt. 23.100 Laufmeter Erdwärmesonden dienen als Saisonspeicher und verteilen diese als kalte Nahwärme. Dabei werden jährlich circa 800 Tonnen an CO2 eingespart.

WOHNQUARTIER MÄRKISCHE SCHOLLE Beispiel nachträglicher Einführung kalter Nahwärme mit Saisonspeicherung in Erdwärme.

WÄRMENETZE, SIEDLUNG UND QUARTIERE Karl-Heinz Stawiarski, Bundesverband Wärmepumpe e.V.. Wärmetagung 2017.

    • Crailsheim: 60 Sonden 55m tief 3 m Abstand in 30m Kreis
    • Braedstrup: 48 Sonden 45m tief für 1481 Einwohner 39,6 GWh

Wärmegewinnung und Kühlung im Sommer durch künstliche Beregnung der Dachflächen

Dachflächenberegnung

Ganzjährige Wärmegewinnung mit Solarthermie Kollektoren oder PVT Hybriden mit Photovoltaik

Um das Erdwärmesondenfeld langfristig als kosteneffektive und ökologische Wärmequelle nutzen zu können, muss mehr Wärmeenergie im Sommer in das Erdwärmesondenfeld eingespeist werden, als im Winter entnommen wird. Aufgrund der Verluste durch die Speicherung ist es zudem ökonomisch, die Warmwasserproduktion und Teile der Heizwärmeproduktion auch im Winter durch Solarthermie zu produzieren. Das kann von der Wärmegewinnung durch künstliche Beregnung der denkmalgeschützten Dächer nicht geleistet werden.

Es wird daher nötig sein, dass zumindest ein Teil der Dachfläche der hierfür geeigneten Dachflächen der nicht denkmalgeschützten Gebäude mit Solarthermie-Kollektoren ausgestattet werden.

PVT-Panel.jpg

Die Verwendung von PVT-Panels nutzt die begrenzte Dachfläche im Dörfl optimal, aber PVT-Panels sind (noch) teurer als PV-Panels oder solartherme Kollektoren. Sie erlauben die Wärmegewinnung für Warmwasser und einen Teil der Heizenergie auch im Winter. Die restliche Wärmeenergie muss über das Nahwärmenetz auf dem Erdwärmsondenfeld entnommen werden und mittels Wärmepumpen auf das Temperaturniveau der Vorlauftemperatur gehoben werden. Dabei kann auch im Winter zum Teil der in der PV-Anlage gewonnene Sonnenstrom herangezogen werden.

Potential geeigneter Dachflächen ohne Denkmalschutz im Dörfl

Tabelle: Potential im Solarpotentialkataster für nicht denkmalgeschützte Gebäude im Dörfl
Adresse Dachfläche sehr gut m2 Dachfläche gut m2 PV kWh/a Solartherm kWh/a
Bloschg 5 9 124 24246 105724
Bloschg 7 21 175 37036 161492
Bloschg 9 60 189 48283 210538
Bloschg 11 35 91 24765 107987
Bloschg 13 14 114 24047 104855
Geigerin 2 0 146 26965 117580
Geigerin 4 7 121 23897 104202
Geigerin 6/1 0 20 3405 14847
Geigerin 6/2 0 28 5029 21929
Georgsplz 3 20 97 22313 97295
Georgsplz 4 13 158 31655 138030
Heiligenstädterstr 331/1 2 44 8647 37703
Heiligenstädterstr 331/2 16 87 20361 88782
Heiligenstädterstr 331/3-4 3 136 26411 115163
Heiligenstädterstr 333 0 46 8431 36761
Heiligenstädterstr 335 0 34 5757 25105
Heiligenstädterstr 337 0 16 2713 11831
Heiligenstädterstr 351 39 104 28113 122585
Heiligenstädterstr 357 0 150 28658 124962
Heiligenstädterstr 359 18 39 10875 47421
Kuchelauer Hafenstraße 2 16 502 97844 426644
Waldbachsteig 1 0 27 4440 19361
Wigand 11 0 40 6880 30001
Wigand 22 0 104 17784 77546
Wigand 23 0 32 5346 23310
Wigand 27 0 148 27064 118012
Wigand 5 0 345 62316 271727
Wigand 7 0 41 7559 32962
Wigand 9 21 129 29379 128108
Summe 294 3287 670219 2922463

Literatur zu PVT:

Photovoltaik-Solarthermie Hybrid (PVT) eine Einführung auf Englisch

es gibt bereits gute kommerzielle PVT Panels

Datei:EUWID CO² neutrale Quartierloesung mit PV-ISIETherm.pdf

Entwickler und Netzbetreiber

Um das Dorf organisatorisch zu entlasten, könnte man auf externe Entwickler und Netzbetreiber zurückgreifen. Beispiele:

  • Beyond Carbon Energy
  • Wien Energie
  • EVN
  • ENGIE

Förderungen

Es gibt bereits öffentliche Förderungen für Wärmepumpen.

Offene Fragen

  1. Borehole thermal energy storage (BTES) im Dörfl zur saisonalen Speicherung für Kühlen und Heizen
    • Konduktive Verluste durch hohe Bodenfeuchtigkeit? Davon berichtet das Erwärmekataster nichts, aber es ist vielleicht zu ungenau.
    • Konvektiven Verlusten durch Grundwasserflüsse in Tiefen <70m?
    • Bodenbeschaffenheit bis auf 50-60m, um Kosten für das Bohren abschätzen zu können?
  2. Erwartete Kostenentwicklung beim Erdgas
  3. Öffentliche Förderung durch für BTES, Nahwärmenetz, passives Kühlen und Solarthermie und erwartete Entwicklung derselben
  4. Gibt es bereits Modellrechnung zur Ökonomie der Kombination aus Heizen und Kühlen mit kalter Nahwärme und BTES?
  5. Genehmigungen (falls die Wirtschaftlichkeit gegeben ist und die Finanzierung machbar erscheint):
    • Zustimmung des Pfarrgemeinderates für die Erdstellung des Erdwärmesondenfeldes und eines Nahwärmetechnikhäuschens im Pfarrgarten
    • Zustimmung des Stifts Klosterneuburg für die Erdstellung des Erdwärmesondenfeldes im Pfarrgarten
    • Zustimmung des Stifts Klosterneuburg für die Errichtung der Pumpstation (und evtl. von 1-2 Pufferspeichern) im Pfarrgarten
    • Genehmigung der Stadt für das Erdwärmesondenfeld (welche MA ist dafür zuständig?)
    • Genehmigung der Stadt für den Bau eines Nahwärmetechnikhäuschens (welche MA ist dafür zuständig?)
    • Genehmigung der Stadt für den Bau des Nahwärmenetztes (welche MA ist dafür zuständig?)