Erdwärmsonden und saisonale Speicherung: Unterschied zwischen den Versionen
AvEF (Diskussion | Beiträge) |
AvEF (Diskussion | Beiträge) |
||
Zeile 112: | Zeile 112: | ||
Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst. | Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst. | ||
− | Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| <ref | + | Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| <ref name="Schmidt 2019"> Schmidt & Sorensen 2018 ''Monitoring Results from Large Scale Heat storages for District Heating in Denmark'']]] [https://planenergi.dk/wp-content/uploads/2018/05/Schmidt-and-Soerensen_Monitoring-Results-from-Large-Scale-Heat-storages-....pdf] |
====Geophysikalische Voraussetzungen im Untergrund:==== | ====Geophysikalische Voraussetzungen im Untergrund:==== |
Version vom 12. März 2022, 16:37 Uhr
Der hohe Primärenergiebedarf im Dörfl hat auch mit dem hohen Anteil an Altbauten, die vielfach noch unsaniert sind, zu tun
Zudem ist die Wohnfläche pro Einwohner teils hoch
Wir wissen bisher aber nur von einigen Häusern den Gas- und Stromverbrauch.
Wir müssen vor größeren Investitionen erst einmal den Iststand beim Verbrauch im Dörfl kennen und uns beraten lassen welche Einsparungen durch Verbesserungen in den Häusern durch die Eigentümer wirtschaftlich sinnvoll und möglich sind.
Wärme ist der wichtigste und aufwändigste Investitionsbereich auf dem Weg zur Klimaneutralität im Dörfl
Warmwasserbereitung und Heizen (und Kühlen) von Wohnraum sind auch der größte Verbraucher von fossilem Brennstoff im Dörfl. Hier entstehen also die meisten CO2 Emissionen.
Im Gegensatz zur Gewinnung von erneuerbaren Produktion von Strom, kann die Wärmegewinnung nicht ausgelagert werden. Sie muss im Dörfl stattfinden.
Wie kann das funktionieren?
Wie für die Stadt Wien vorgeschlagen kann das nur durch eine Kombination von Maßnahmen erfolgen.
- Mit einer thermischen Sanierung der Gebäude soweit ökonomisch vertretbar, um den Heizenergiebedarf zu senken.
- Umstellung der Heizung.
Die Optionen zum klimaneutralen Heizen sind:
- Bioenergie in Form von Pellets und Hackschnitzelheizung wird an Grenzen stoßen und sollte der Plan B sein.
- Solarthermie-Kollektoren damit kann man auch im Winter Wärme erzeugen, aber der Großteil des Wärmebedarfs fällt im Winter an, wenn nur 25% vom Jahresertrag gewonnen werden können. Eine Überdimensionierung der Kollektoren für eine Deckung des Heizenergiebedarfs im Winter wäre unökonomisch und aufgrund der begrenzten geeigneten Dachflächen im Dörfl unmöglich.
- Nutzung von Erdwärme mittels Wärmepumpen wird daher eine große Rolle spielen müssen.
Wir wollen hier aufzeigen, dass der effektivste Weg die Optionen 2 und 3 kombiniert. Dabei wird von überschüssige Wärme aus dem Sommerhalbjahr in einen saisonalen Wärmespeicher gepumpt und im Winter zum Heizen mittels Wärmepumpe verwendet.
Im Dörfl stehen keine großen Flächen für große thermale Wasserspeicher zur Verfügung, daher wird hier eine Speicherung in einem Erdwärmesondenfeld vorgeschlagen.
Das Dörfl braucht erneuerbares Heizen im Winter mittels Erdwärme
Die Preisentwicklung von fossilen Energieträgern wie Erdgas und der Druck aus ökologischen und politischen Gründen vom Erdgas unabhängig zu werden, begünstigen die unten dargestellten Maßnahmen zur Energiegewinnung und Speicherung.
Schließlich wird das Heizen mit Erdgas 2040 verboten. Spätestens dann muss also eine Umstellung auf erneuerbare Energie erfolgen. Wenn wir die Investition in die Umstellung schon heute vorzunehmen sparen wir 18 Jahre Ausgaben für Erdgas ein.
Daher soll das Dörfl in Zukunft mit Erdwärme heizen.
Dies geschieht mittels:
- Erdwärmesonden,
- Wärmepumpe und
- Flächenheizungen in möglichst gut thermisch sanierten Wohnhäusern.
Die Wärmeleitfähigkeit der Erde im Dörfl beträgt 2W/m/K
Erdwärmesondenfeld ohne Regeneration
Für das Dörfl bräuchte man aber ein ganzes Erdwärmesondenfeld (z.B. unter dem Pfarrgarten),
denn viele Häuser können mangels Garten keine Erdsonden installieren.
Hier wäre typisch
- Abstand der Sonden beträgt für eine reine Extraktion von Wärme mindestens 7 m
- Pro 5 kW Heizleistung (1500 Vollaststunden) 1 Sonde mit 70-100m
- Ca. 2 Sonden pro Einfamilienhaus
- An der Oberfläche ist das Sondenfeld unsichtbar
Dabei gibt es ein gravierendes Problem - die Auskühlung der Erde
Die Erde wird bei einzelnen Erdwärmesonden und stärker noch im Erdwärmesondenfeld durch den stetigen Wärmentzug über die Jahre ausgekühlt
Kühlen im Sommer und Heizen im Winter vermittels saisonaler thermischer Speicherung im Erdwärmesondenfeld
Der Bedarf für Kühlung steigt und damit die Kosten
Schon heute verschlingt eine Klimaanlage mit 2,5 kW Leistung am Tag gerne 10 € für Stromkosten und das bezieht die Installationskosten noch gar nicht ein. Das Kühlen von Gebäuden wird bis 2040 für immer mehr Stunden pro Jahr nötig und der Stromverbrauch für Klimaanlagen würde auf das 3,4 fache bis 2040 steigen.
Kühlung im Sommer durch Verwendung der Heizflächen kombiniert mit Wärmegewinnung für den Winter
Durch die globale Erwärmung sinkt der Wärmebedarf im Winter durch Anhebung der Minimaltemperaturen und Verkürzung der Heizperiode. Gleichzeitig werden die Maximaltemperaturen steigen und die Zahl der Hitzetage steigen. Somit wird die Effektivität der saisonalen Speicherung von Wärme aus Kühlung im Sommer für die Heizung im Winter im Laufe der nächsten 25 Jahre verbessert.
- Die Wärmepumpe nimmt das kühle Wasser aus dem Erdsondenfeld über das Nahwärmenetz auf.
- Das kühle Wasser durchströmt die Heizflächen, nimmt die Wärmeenergie der Räume auf und kühlt sie so.
- Die Wärme wird über das Nahwärmenetz in die Erdwärmesonden gepumpt und an das Erdreich abgegeben.
- Die Raumtemperatur wird so im Sommer um 3° gesenkt
- der subjektive Effekt ist noch stärker
- und der Erdwärmespeicher wird für effizientes Heizen im Winter aufgewärmt
- [die Kühlung im Sommer braucht 3,8 mal weniger Strom als eine Klimaanlage]
[Quelle]
Technik der Speicherung im Erdwärmesondenfeld
Hierzu gibt es von der International Energy Association (IEA) eine detaillierte Dokumentation [1] . Im Reviewartikel zu BTES von Skarphagen et al 2019 wird auf Designelemente zum Wärmetransfer fokussiert [2]. Am 9.3.2021 bekamen wir eine persönliche allgemeine Beratung zum Thema [3].
Generell gibt es zwei Formen von BTES: solche mit hohen Temperaturen aus Prozesswärme und solche bei denen das normale Temperaturniveau im Untergrund erhalten bleibt, indem im Winter ebenso viel Wärme entnommen wird, wie im Sommer zugeführt wird. Für unser Klimadörfl kommt nur letzteres in Frage. Bei dieser Form der Speicherung wird das Temperaturniveau des Erdreichs im Abstand von 20m außerhalb des Speichers weder saisonal noch langfristig beeinflusst.
Das Temperatur vs. Tiefenprofil im Sondenfeldzentrum im Verlauf eines Jahreszyklus am Beispiel Braestrup [[File:Braestrup BTES Temperaturprofile im Sondenfeldzentrum im Verlauf der Saison.png|400px| Referenzfehler: Für ein <ref>
-Tag fehlt ein schließendes </ref>
-Tag. Der Gasbrenner (GB) als Wärmequelle ist ökologisch die schlechterste Lösung. Die Verwendung von Kraftwärmekopplung zur Stromproduktion (combined heat and power = CHP) ist nur in einer kleinen Quantität und nur in Kombination mit BTES und STC sinnvoll. Der ökologische Fußabdruck wurde dabei als CO2-Bilanz im Lebenszyklus (also Einschließlich der Produktion) auf der Horizontalachse (global warming potential = GWP) angegeben. Bei den Kosten werden Kreditkosten für die Investition und Unterhaltskosten berücksichtigt (levelized cost of heat = LCOH). In dieser Abbildung werden die Ergebnisse ohne staatliche Förderung angegeben:
Bei Einbeziehung der staatlichen Förderung wird die STC+BTES Kombination auch wirtschaftlich Gasbrennern überlegen:
Für einen definierten Heizenergiebedarf in einem Fernwärmeverbund gibt es optimale Kombinationen von der Fläche der Solarthermie-Kollektoren (STC) und der Tiefe der Bohrungen für die Erwärmesonden (BTES) sowohl für die Wirtschaftlichkeit (LCOH) als auch die Ökologie (GWP).
Eine Komponente Kraftwärmekopplung verbessert die Wirtschaftlichkeit
Wie die obige Analyse aufzeigt, würde eine kleine Komponente Kraftwärmekopplung die LCOH also die Wirtschaftlichkeit etwas verbessern. Der Beitrag sollte laut der obigen Modellierung ca. 14% des gesamten Heizenergiebedarfs betragen. Wenn diese bis 2030 mit Erdgas und danach mit Wasserstoff erfolgt, wäre der ökologische Nachteil gering und zeitlich begrenzt. Die damit verbundene Stromproduktion könnte den Stromverbrauch durch die Wärmepumpen decken helfen.
Literatur
- ↑ Mangold D, Deschaintre L. IEA SHC Task 45B Report der International Energy Agency, Solar Heating and Cooling Programme, ausgeführt von Solites, Stuttgard IEA SHC Task45B Report
- ↑ Skarphagen H, Banks D, Frengstad BS, Gether H. Design Considerations for Borehole Thermal Energy Storage (BTES): A Review with Emphasis on Convective Heat Transfer. Hindawi Geofluids (Wiley) 2019 doi:10.1155/2019/4961781
- ↑ DI Dr. E. Haslinger Senior Scientist für Integrated Energy Systems im Austrian Institute of Technology GmbH, Wien
Seasonal Thermal Energy Storage - Critical Review
Beim erneuerbaren Energieprojekt Krieau werden im Viertel Zwei seit 3 Jahren 2.350 Menschen auf 80.000 m² mit nachhaltiger Wärme und Kälte versorgt. 23.100 Laufmeter Erdwärmesonden dienen als Saisonspeicher und verteilen diese als kalte Nahwärme. Dabei werden jährlich circa 800 Tonnen an CO2 eingespart.
WOHNQUARTIER MÄRKISCHE SCHOLLE Beispiel nachträglicher Einführung kalter Nahwärme mit Saisonspeicherung in Erdwärme.
WÄRMENETZE, SIEDLUNG UND QUARTIERE Karl-Heinz Stawiarski, Bundesverband Wärmepumpe e.V.. Wärmetagung 2017.
- Crailsheim: 60 Sonden 55m tief 3 m Abstand in 30m Kreis
- Braedstrup: 48 Sonden 45m tief für 1481 Einwohner 39,6 GWh
Wärmegewinnung und Kühlung im Sommer durch künstliche Beregnung der Dachflächen
Ganzjährige Wärmegewinnung mit Solarthermie Kollektoren oder PVT Hybriden mit Photovoltaik
Um das Erdwärmesondenfeld langfristig als kosteneffektive und ökologische Wärmequelle nutzen zu können, muss mehr Wärmeenergie im Sommer in das Erdwärmesondenfeld eingespeist werden, als im Winter entnommen wird. Aufgrund der Verluste durch die Speicherung ist es zudem ökonomisch, die Warmwasserproduktion und Teile der Heizwärmeproduktion auch im Winter durch Solarthermie zu produzieren. Das kann von der Wärmegewinnung durch künstliche Beregnung der denkmalgeschützten Dächer nicht geleistet werden.
Es wird daher nötig sein, dass zumindest ein Teil der Dachfläche der hierfür geeigneten Dachflächen der nicht denkmalgeschützten Gebäude mit Solarthermie-Kollektoren ausgestattet werden.
Die Verwendung von PVT-Panels nutzt die begrenzte Dachfläche im Dörfl optimal, aber PVT-Panels sind (noch) teurer als PV-Panels oder solartherme Kollektoren. Sie erlauben die Wärmegewinnung für Warmwasser und einen Teil der Heizenergie auch im Winter. Die restliche Wärmeenergie muss über das Nahwärmenetz auf dem Erdwärmsondenfeld entnommen werden und mittels Wärmepumpen auf das Temperaturniveau der Vorlauftemperatur gehoben werden. Dabei kann auch im Winter zum Teil der in der PV-Anlage gewonnene Sonnenstrom herangezogen werden.
Potential geeigneter Dachflächen ohne Denkmalschutz im Dörfl
Adresse | Dachfläche sehr gut m2 | Dachfläche gut m2 | PV kWh/a | Solartherm kWh/a |
---|---|---|---|---|
Bloschg 5 | 9 | 124 | 24246 | 105724 |
Bloschg 7 | 21 | 175 | 37036 | 161492 |
Bloschg 9 | 60 | 189 | 48283 | 210538 |
Bloschg 11 | 35 | 91 | 24765 | 107987 |
Bloschg 13 | 14 | 114 | 24047 | 104855 |
Geigerin 2 | 0 | 146 | 26965 | 117580 |
Geigerin 4 | 7 | 121 | 23897 | 104202 |
Geigerin 6/1 | 0 | 20 | 3405 | 14847 |
Geigerin 6/2 | 0 | 28 | 5029 | 21929 |
Georgsplz 3 | 20 | 97 | 22313 | 97295 |
Georgsplz 4 | 13 | 158 | 31655 | 138030 |
Heiligenstädterstr 331/1 | 2 | 44 | 8647 | 37703 |
Heiligenstädterstr 331/2 | 16 | 87 | 20361 | 88782 |
Heiligenstädterstr 331/3-4 | 3 | 136 | 26411 | 115163 |
Heiligenstädterstr 333 | 0 | 46 | 8431 | 36761 |
Heiligenstädterstr 335 | 0 | 34 | 5757 | 25105 |
Heiligenstädterstr 337 | 0 | 16 | 2713 | 11831 |
Heiligenstädterstr 351 | 39 | 104 | 28113 | 122585 |
Heiligenstädterstr 357 | 0 | 150 | 28658 | 124962 |
Heiligenstädterstr 359 | 18 | 39 | 10875 | 47421 |
Kuchelauer Hafenstraße 2 | 16 | 502 | 97844 | 426644 |
Waldbachsteig 1 | 0 | 27 | 4440 | 19361 |
Wigand 11 | 0 | 40 | 6880 | 30001 |
Wigand 22 | 0 | 104 | 17784 | 77546 |
Wigand 23 | 0 | 32 | 5346 | 23310 |
Wigand 27 | 0 | 148 | 27064 | 118012 |
Wigand 5 | 0 | 345 | 62316 | 271727 |
Wigand 7 | 0 | 41 | 7559 | 32962 |
Wigand 9 | 21 | 129 | 29379 | 128108 |
Summe | 294 | 3287 | 670219 | 2922463 |
Literatur zu PVT:
Photovoltaik-Solarthermie Hybrid (PVT) eine Einführung auf Englisch
es gibt bereits gute kommerzielle PVT Panels
Datei:EUWID CO² neutrale Quartierloesung mit PV-ISIETherm.pdf
Entwickler und Netzbetreiber
Um das Dorf organisatorisch zu entlasten, könnte man auf externe Entwickler und Netzbetreiber zurückgreifen. Beispiele:
- Beyond Carbon Energy
- Wien Energie
- EVN
- ENGIE
Förderungen
Es gibt bereits öffentliche Förderungen für Wärmepumpen.
Offene Fragen
- Borehole thermal energy storage (BTES) im Dörfl zur saisonalen Speicherung für Kühlen und Heizen
- Konduktive Verluste durch hohe Bodenfeuchtigkeit? Davon berichtet das Erwärmekataster nichts, aber es ist vielleicht zu ungenau.
- Konvektiven Verlusten durch Grundwasserflüsse in Tiefen <70m?
- Bodenbeschaffenheit bis auf 50-60m, um Kosten für das Bohren abschätzen zu können?
- Erwartete Kostenentwicklung beim Erdgas
- Öffentliche Förderung durch für BTES, Nahwärmenetz, passives Kühlen und Solarthermie und erwartete Entwicklung derselben
- Gibt es bereits Modellrechnung zur Ökonomie der Kombination aus Heizen und Kühlen mit kalter Nahwärme und BTES?
- Genehmigungen (falls die Wirtschaftlichkeit gegeben ist und die Finanzierung machbar erscheint):
- Zustimmung des Pfarrgemeinderates für die Erdstellung des Erdwärmesondenfeldes und eines Nahwärmetechnikhäuschens im Pfarrgarten
- Zustimmung des Stifts Klosterneuburg für die Erdstellung des Erdwärmesondenfeldes im Pfarrgarten
- Zustimmung des Stifts Klosterneuburg für die Errichtung der Pumpstation (und evtl. von 1-2 Pufferspeichern) im Pfarrgarten
- Genehmigung der Stadt für das Erdwärmesondenfeld (welche MA ist dafür zuständig?)
- Genehmigung der Stadt für den Bau eines Nahwärmetechnikhäuschens (welche MA ist dafür zuständig?)
- Genehmigung der Stadt für den Bau des Nahwärmenetztes (welche MA ist dafür zuständig?)