Erdwärmsonden und saisonale Speicherung
Der hohe Primärenergiebedarf im Dörfl hat auch mit dem hohen Anteil an Altbauten, die vielfach noch unsaniert sind, zu tun
Zudem ist die Wohnfläche pro Einwohner teils hoch
Wir wissen bisher aber nur von einigen Häusern den Gas- und Stromverbrauch.
Wir müssen vor größeren Investitionen erst einmal den Iststand beim Verbrauch im Dörfl kennen und uns beraten lassen welche Einsparungen durch Verbesserungen in den Häusern durch die Eigentümer wirtschaftlich sinnvoll und möglich sind.
Wärme ist der wichtigste und aufwändigste Investitionsbereich auf dem Weg zur Klimaneutralität im Dörfl
Warmwasserbereitung und Heizen (und Kühlen) von Wohnraum sind auch der größte Verbraucher von fossilem Brennstoff im Dörfl. Hier entstehen also die meisten CO2 Emissionen.
Im Gegensatz zur Gewinnung von erneuerbaren Produktion von Strom, kann die Wärmegewinnung nicht ausgelagert werden. Sie muss im Dörfl stattfinden.
Wie kann das funktionieren?
Wie für die Stadt Wien vorgeschlagen kann das nur durch eine Kombination von Maßnahmen erfolgen.
- Mit einer thermischen Sanierung der Gebäude soweit ökonomisch vertretbar, um den Heizenergiebedarf zu senken.
- Umstellung der Heizung.
Die Optionen zum klimaneutralen Heizen sind:
- Bioenergie in Form von Pellets und Hackschnitzelheizung wird an Grenzen stoßen und sollte der Plan B sein.
- Solarthermie-Kollektoren damit kann man auch im Winter Wärme erzeugen, aber der Großteil des Wärmebedarfs fällt im Winter an, wenn nur 25% vom Jahresertrag gewonnen werden können. Eine Überdimensionierung der Kollektoren für eine Deckung des Heizenergiebedarfs im Winter wäre unökonomisch und aufgrund der begrenzten geeigneten Dachflächen im Dörfl unmöglich.
- Nutzung von Erdwärme mittels Wärmepumpen wird daher eine große Rolle spielen müssen.
Wir wollen hier aufzeigen, dass der effektivste Weg die Optionen 2 und 3 kombiniert. Dabei wird von überschüssige Wärme aus dem Sommerhalbjahr in einen saisonalen Wärmespeicher gepumpt und im Winter zum Heizen mittels Wärmepumpe verwendet.
Im Dörfl stehen keine großen Flächen für große thermale Wasserspeicher zur Verfügung, daher wird hier eine Speicherung in einem Erdwärmesondenfeld vorgeschlagen.
Das Dörfl braucht erneuerbares Heizen im Winter mittels Erdwärme
Die Preisentwicklung von fossilen Energieträgern wie Erdgas und der Druck aus ökologischen und politischen Gründen vom Erdgas unabhängig zu werden, begünstigen die unten dargestellten Maßnahmen zur Energiegewinnung und Speicherung.
Schließlich wird das Heizen mit Erdgas 2040 verboten. Spätestens dann muss also eine Umstellung auf erneuerbare Energie erfolgen. Wenn wir die Investition in die Umstellung schon heute vorzunehmen sparen wir 18 Jahre Ausgaben für Erdgas ein.
Daher soll das Dörfl in Zukunft mit Erdwärme heizen.
Dies geschieht mittels:
- Erdwärmesonden,
- Wärmepumpe und
- Flächenheizungen in möglichst gut thermisch sanierten Wohnhäusern.
Die Wärmeleitfähigkeit der Erde im Dörfl beträgt 2W/m/K
Erdwärmesondenfeld
Für das Dörfl bräuchte man aber ein ganzes Erdwärmesondenfeld (z.B. unter dem Pfarrgarten),
denn viele Häuser können mangels Garten keine Erdsonden installieren.
Hier wäre typisch
- Abstand der Sonden beträgt für eine reine Extraktion von Wärme mindestens 7 m
- Pro 5 kW Heizleistung (1500 Vollaststunden) 1 Sonde mit 70-100m
- Ca. 2 Sonden pro Einfamilienhaus
- An der Oberfläche ist das Sondenfeld unsichtbar
Dabei gibt es ein gravierendes Problem - die Auskühlung der Erde
Die Erde wird bei einzelnen Erdwärmesonden und stärker noch im Erdwärmesondenfeld durch den stetigen Wärmentzug über die Jahre ausgekühlt
Kühlen und Wärmegewinnen im Sommer und Heizen im Winter vermittels dem saisonalen thermischen Speicher
Der Bedarf für Kühlung steigt und damit die Kosten
Schon heute verschlingt eine Klimaanlage mit 2,5 kW Leistung am Tag gerne 10 € für Stromkosten und das bezieht die Installationskosten noch gar nicht ein. Das Kühlen von Gebäuden wird bis 2040 für immer mehr Stunden pro Jahr nötig und der Stromverbrauch für Klimaanlagen würde auf das 3,4 fache bis 2040 steigen.
Kühlung im Sommer durch Verwendung der Heizflächen kombiniert mit Wärmegewinnung für den Winter
Durch die globale Erwärmung sinkt der Wärmebedarf im Winter durch Anhebung der Minimaltemperaturen und Verkürzung der Heizperiode. Gleichzeitig werden die Maximaltemperaturen steigen und die Zahl der Hitzetage steigen. Somit wird die Effektivität der saisonalen Speicherung von Wärme aus Kühlung im Sommer für die Heizung im Winter im Laufe der nächsten 25 Jahre verbessert.
- Die Wärmepumpe nimmt das kühle Wasser aus dem Erdsondenfeld über das Nahwärmenetz auf.
- Das kühle Wasser durchströmt die Heizflächen, nimmt die Wärmeenergie der Räume auf und kühlt sie so.
- Die Wärme wird über das Nahwärmenetz in die Erdwärmesonden gepumpt und an das Erdreich abgegeben.
- Die Raumtemperatur wird so im Sommer um 3° gesenkt
- der subjektive Effekt ist noch stärker
- und der Erdwärmespeicher wird für effizientes Heizen im Winter aufgewärmt
- [die Kühlung im Sommer braucht 3,8 mal weniger Strom als eine Klimaanlage]
[Quelle]
Technik der Speicherung im Erdwärmesondenfeld
Hierzu gibt es eine ältere, aber sehr detaillierte Dokumentation: IEA SHC Task45B Report
Der Abstand der Bohrlöcher beträgt nur 2-5m und typisch 3 m.
Bohrtiefe
Um Verluste durch Wärmeleitung in das umliegende Erdreich zu minimieren, soll das Verhältnis von Oberfläche zu Volumen möglichst klein gehalten werden und dies gelingt am Besten wenn der Durchmesser des Sondenfeldes der Bohrtiefe ähnelt.
Es hat sich erwiesen, dass eine Bohrtiefe von ca. 50m optimal ist (siehe Abb.:)
Die Tiefe der Bohrungen bzw. Länge der Sonden wird aber auch durch etwaige Grundwasserströme begrenzt.
Die serielle Verschaltung der Erdwärmesonden
Angestrebt wird eine Schichtung der Wärme, mit der höchsten Temperatur im Zentrum, um die Wärmeverluste am Rand zu minimieren und eine möglichst hohe untere Temperatur für die Wärmepumpen im Winter zu gewinnen.
Dazu ist eine serielle Verschaltung der Sonden im Feld von Peripherie zum Zentrum nötig. Bei der Einspeicherung von Wärme im Sommer wird das Wasser ins Zentrum einleitet und das kühle Wasser von der Periphere ins Nahwärmenetz rückgeführt, wo es zur Kühlung von Wohnraum dient. Im Winter wird das kühle Wasser aus dem Nahewärmenetz umgekehrt in die Peripherie eingeleitet und das warme Wasser aus dem Zentrum als Grundlage für die Heizung verwendet.
In Crailsheim wurde in den obersten 5 m des Erdbodens eine intermittierender Wasserfluss festgestellt, weshalb hier mit einem höheren Durchmesser gebohrt und isoliert wurde, um konvektive Verluste zu minimieren.
Die Isolation nach oben
Diese wurde in Crailsheim mit einer 50cm dicken Schaumglasschotter erzielt.
In Braedstrup, Dänemark wurde zur Dämmung nach oben eine 50cm dicken Schicht aus Muschelschalen eingesetzt.
Der Wirkungsgrad der Energiespeicherung im Erdwärmesondenfeld
Wird in der Literatur mit 50-90% angegeben. Die Eignung der Geophysik für eine saisonale thermische Energiespeicherung in einem Erdwärmesondenfeld (engl. Borehole thermal energy storage BTS) hängt von drei Faktoren ab:
- der Wärmekapazität, die, wenn sie zu niedrig ist, das Volumen des Speichers vergrößert und damit weniger wirtschaftlich macht
- der Wärmeleitfähigkeit, die wenn sie zu hoch ist, den Verlust der Wärme an der Oberfläche des thermischen Speichers begünstigt. Im Dörfl ist die Wärmeleitfähigkeit im Untergrund bis 100m Tiefe im Erdwärmepotentialkataster mit 2,05 +-0,2 W/m/K angegeben. Was eine mittlere bis gute Voraussetzung schafft.
- Grundwasserströmen im Tiefenbereich von 15-70m, die zu Konvektionsverlusten der gespeicherten Wärme führt Die Verluste durch Wärmeleitung und Wärmeströmung in Grundwasseradern (Aquiferen)
Der Effekt der sommerlichen Überwärmung der Erde wirkt sich nur langsam auf die Temperatur im Erdwärmesondenfeld aus. Das untere Temperaturniveau bzw. Verdampfertemperatur und damit auch die Effektivität der Heizung im Winter mit Wärmepumpen steigt deshalb über die Jahre mindestens bis zum 5. Jahr nach Installation.
Kosten der BTES:
Die Kosteneffizienz der saisonalen thermischen Speicherung in Erdwärmesondenfeldern hängt von der geophysikalischen Eignung und vom Speichervolumen ab.
In der obigen Grafik lässt sich ablesen, dass mit Investitionskosten von 50€/m3 Wasseräquivalent zu rechnen ist. Da Wasser eine Wärmekapazität von 4,19kJ/kg/K hat, bedeutet das 12€/MJ*K. Bei einer Temperaturspreizung von 25°C wären das 0,5€ pro MJ gespeicherter Wärme, oder 1,8€/kWh. Bei einer Amortisationsdauer von 18 Jahren wären das ca. 10ct/kWh. Dies Preis ist zwar jetzt im Rahmen der Ukrainekrise konkurrenzfähig mit dem Gaspreis, wäre aber in den letzten Jahren deutlich teurer. Diese Rechnung vernachlässigt aber, dass
- das Erdsondenfeld unabhängig von der Speicherung als Quelle von Wärmeenergie dient und
- die Kühlung im Sommer, die im Laufe der Jahre immer mehr an Bedeutung gewinnt und sonst Investitionskosten für eine Klimaanlage und laufende Kosten für den Strom verursachen würde.
Die Kosten für die Erdbohrungen werden mit 50-100€/m abhängig von der Bodenbeschaffenheit und Auftragsvolumen angegeben. Es ist mit Kosten von ca. 350.000€ zu rechnen.
Die Gesamtschau - Heizen und Kühlen im Dörfl mit Nahwärme und Speicherung Erdsondenfeld
Praxisbeispiele
Es ergibt sich eine komplexes System der Integration von solarthermischen Kollektoren, Wärmepumpen, Kurzzeitspeicher und saisonaler Speicherung im Erdsondenfeld:
optimaler Kompromiss von Wirtschaftlichkeit und Ökologie
Die Kombination von saisonaler Speicherung im Erdwärmesondenfeld (BTES) + Solarthermie-Kollektoren (STC) erweist sich als eine ökologisch besonders wirksame Methode.[1] Der Gasbrenner (GB) als Wärmequelle ist ökologisch die schlechterste Lösung. Die Verwendung von Kraftwärmekopplung zur Stromproduktion (combined heat and power = CHP) ist nur in einer kleinen Quantität und nur in Kombination mit BTES und STC sinnvoll. Der ökologische Fußabdruck wurde dabei als CO2-Bilanz im Lebenszyklus (also Einschließlich der Produktion) auf der Horizontalachse (WHR) angegeben. Bei den Kosten werden Kreditkosten für die Investition und Unterhaltskosten berücksichtigt (levelized cost of heat = LCOH). In dieser Abbildung werden die Ergebnisse ohne staatliche Förderung angegeben:
Bei Einbeziehung der staatlichen Förderung wird die STC+BTES Kombination auch wirtschaftlich Gasbrennern überlegen:
Literatur
- ↑ Welsch et al. "Environmental and economic assessment of borehole thermal energy storage in district heating systems" Applied Energy 216 (2018) S. 73-90
Für die saisonale Erdspeicherung gibt es bereits Praxisbeispiele
- Die Bohrtiefe wird durch Grundwasser begrenzt.
- eine höhere Zahl von Sonden bedeutet eine bessere Relation von Volumen zu Oberfläche des Erdspeichers und steigert die Effizienz
- Die Erde wird im Sommer z.B. auf bis zu 55°C erwärmt und im Winter bis auf bis zu 15°C mithilfe der Wärmepumpen entladen.
- Praxisbeispiele
- Crailsheim: 60 Sonden 55m tief 3 m Abstand in 30m Kreis
- Braedstrup: 48 Sonden 45m tief für 1481 Einwohner 39,6 GWh
Literatur:
Seasonal Thermal Energy Storage - Critical Review
Beim erneuerbaren Energieprojekt Krieau werden im Viertel Zwei seit 3 Jahren 2.350 Menschen auf 80.000 m² mit nachhaltiger Wärme und Kälte versorgt. 23.100 Laufmeter Erdwärmesonden dienen als Saisonspeicher und verteilen diese als kalte Nahwärme. Dabei werden jährlich circa 800 Tonnen an CO2 eingespart.
WOHNQUARTIER MÄRKISCHE SCHOLLE Beispiel nachträglicher Einführung kalter Nahwärme mit Saisonspeicherung in Erdwärme.
WÄRMENETZE, SIEDLUNG UND QUARTIERE Karl-Heinz Stawiarski, Bundesverband Wärmepumpe e.V.. Wärmetagung 2017.
Wärmegewinnung und Kühlung im Sommer durch künstliche Beregnung der Dachflächen
Geeignete Gebäude sind vor allem die denkmalgeschützten Gebäude
Wir haben im Dörfl 11 denkmalgeschützte Gebäude mit teils sehr großen Dachflächen. Der Denkmalschutz erlaubt i.d.R. keine PV-Panels oder Solarthermischen Kollektoren.
Adresse | Historie | Dachfläche sehr gut m2 | Dachfläche gut m2 | PV kWh/a | Solartherm kWh/a |
---|---|---|---|---|---|
Bloschg 1 | Bürgerhaus mittelalt. | 85 | 218 | 58290 | 254173 |
Bloschg 2 | Pfarrhof | 39 | 166 | 39469 | 172105 |
Bloschg 3 | Bürgerhaus | 0 | 134 | 23660 | 103169 |
Georgsplz 1 | Mesnerhaus | 6 | 103 | 20750 | 90478 |
Georgsplz 2 | 15.JH und 17. JH | 12 | 92 | 20294 | 88492 |
Jungherrnsteig 2 | ehem Volksschule | 187 | 94 | 60691 | 264641 |
Wigand 41 | Pfarrkirche | 2 | 72 | 13606 | 59329 |
Zwillinggasse 1 | Maria Theresia-Schlösschen | 110 | 280 | 76035 | 331546 |
Wigand 25 | ehem Feuerwache | 0 | 87 | 15385 | 67088 |
Wigand 37 | Ehem. Freihof Stifts KN | 63 | 192 | 49921 | 217679 |
Wigand 39 | Bürgerhaus ehem Schule | 9 | 49 | 11007 | 47996 |
Summe | denkmalgeschützte G. | 513 | 1487 | 389108 | 1696696 |
Damit wir einen Teil der Wärme auf den Dächern dieser Gebäude dennoch für einen Beitrag zur Klimaneutralität nutzen und gleichzeitig die Dachwohnungen vor der Sonnenhitze schützen können, haben wir ein innovatives, in dieser Form noch nicht veröffentlichtes Verfahren erdacht: wir wollen die sonnenbeschienen Dächer künstlich beregnen!
TECHNIK
- In der hauseigenen Zisterne gesammelte Regenwasser wird auf das Dach gepumpt
- Regenwasser ist kalkfrei und hinterlässt keine Flecken am Dach, die nicht nur unschön wären, sondern auch das Licht reflektieren würden
- das Wasser wird über Tropfschläuche gezielt in die Dachziegelsenken geleitet oder bei Flachziegeln ca. alle 5cm ein Loch
- dort kühlt es die Dachziegel und nimmt die Sonnenwärme auf
- die Temperatur des Wassers in Regenrinne und Fallrohr wird über die Pumpleistung geregelt und optimal gehalten
- so wird immer nur die im Tagesverlauf ausreichend sonnenbeschienenen Dachflächen künstlich beregnet
- das gewärmte Wasser wird in den Fallrohren durch Fallrohrfilter abgezweigt und über Rohre zum Wärmetauscher geleitet
- so wird die Wärme für das Haus zur Warmwasserbereitung zur Verfügung gestellt und dafür einem Puffer als Kurzzeitspeicher (vielleicht einem Schichtladespeicher) zugeführt
- und im Sommer wird die meiste Wärme über das Nahwärmenetz abführt.
- Nach dem Wärmetauscher fließt das Wasser zurück in die Zisterne.
- Natürlicher Regen wird ebenfalls über die Rohre in die Zisterne geleitet, um Verluste durch Verdunstung auf dem Dach von bis zu 5 Litern pro Stunde auszugleichen. Der natürliche Regen wird aber über ein elektromagnetisches Ventil am Wärmetauscher vorbei in die Zisterne geleitet.
Dabei entstehen eine Reihe von Verlusten, die sich in Modellrechnungen abschätzen lassen:
- 33% Reflexion (Albedo von roten Dachziegeln)
- 68% Abstrahlungsverlust nach oben
- 18% Verdunstung bei 35°C mittlerer Temperatur des Wassers auf dem Dach (Temperatur dürfte von 25°C am First auf 40°C in der Dachrinne steigen)
Weitere Einschränkungen
- ca. 15% Verlust entstehen im Wärmetauscher
- und 10-50% Speicherverluste
- im Winter ist die Methode weniger nützlich, denn eine Dachberegnung mit Regenwasser kann z.B. bei Frost oder Frostgefahr nicht erfolgen und die konvektiven Verluste durch Wind bei winterlichen Temperaturen senken die erzielbaren Temperaturen des Wassers und den Wärmeertrag.
Beispiel:
- Bei 110m2 südgerichtetem Dachanteil
- müssen im Sommer mittags 0,6 Liter/s Wasser auf das Dach gepumpt werden und
- die Zisterne muss mindestens 500 Liter fassen
- Die Tauchpumpe muss einen Druck leisten der von der Firsthöhe abhängt (>1bar/10m). Der Durchfluss hängt von der Dachfläche ab. Bei einem 10m hohen Dach und einem Wirkungsgrad von 0,8 wären das 0,6kg*9,81m/s2 *10m / 0,8 = 73 W peak. Kein Problem zum Zeitpunkt maximaler Solarstromproduktion bzw. in Zukunft Überproduktion.
- es werden 25kW-peak thermisch produziert
Kostenschätzung:
- Tropfschläuche mit Montage <500€
- 2 Fallrohrfilter 100€
- Rohrleitungen mit Verlegen 500€
- elektromechanisches Ventil 100€
- 2 Wärmetauscher in Serie 10-15 kW 1000€
- 2 Tauchpumpen 100€
- Sensoren und Regelelektronik 250€
- Summe 2500€
Wirtschaftlichkeit
Der Jahresertrag an Wärme wird vermutlich durch Verluste bei den Wärmetauschern, bei der saisonalen Speicherung und durch Downzeiten (z.B. Frost) im Winter in unserem Beispiel auf ca. 12,5 MWh/a reduziert. Auf einen Amortisationszeitraum von 18 Jahren (bis 2040) ergeben sich ohne zeitliche Diskontierung Kosten von 11 €/MWh thermal.
Links zur Dachkühlung:
- https://www.oekoservice.com/dachkuehlung/Kurzinfo_Dachkuehlung.pdf
- https://docplayer.org/9378290-Dachkuehlung-projektarbeit-thomas-czoske-dominik-neusch-oekoservice-umwelt-und-abwassertechnik.html
Ganzjährige Wärmegewinnung mit Solarthermie Kollektoren oder PVT Hybriden mit Photovoltaik
Um das Erdwärmesondenfeld langfristig als kosteneffektive und ökologische Wärmequelle nutzen zu können, muss mehr Wärmeenergie im Sommer in das Erdwärmesondenfeld eingespeist werden, als im Winter entnommen wird. Aufgrund der Verluste durch die Speicherung ist es zudem ökonomisch, die Warmwasserproduktion und Teile der Heizwärmeproduktion auch im Winter durch Solarthermie zu produzieren. Das kann von der Wärmegewinnung durch künstliche Beregnung der denkmalgeschützten Dächer nicht geleistet werden.
Es wird daher nötig sein, dass zumindest ein Teil der Dachfläche der hierfür geeigneten Dachflächen der nicht denkmalgeschützten Gebäude mit Solarthermie-Kollektoren ausgestattet werden.
Die Verwendung von PVT-Panels nutzt die begrenzte Dachfläche im Dörfl optimal, aber PVT-Panels sind (noch) teurer als PV-Panels oder solartherme Kollektoren. Sie erlauben die Wärmegewinnung für Warmwasser und einen Teil der Heizenergie auch im Winter. Die restliche Wärmeenergie muss über das Nahwärmenetz auf dem Erdwärmsondenfeld entnommen werden und mittels Wärmepumpen auf das Temperaturniveau der Vorlauftemperatur gehoben werden. Dabei kann auch im Winter zum Teil der in der PV-Anlage gewonnene Sonnenstrom herangezogen werden.
Potential geeigneter Dachflächen ohne Denkmalschutz im Dörfl
Adresse | Dachfläche sehr gut m2 | Dachfläche gut m2 | PV kWh/a | Solartherm kWh/a |
---|---|---|---|---|
Bloschg 5 | 9 | 124 | 24246 | 105724 |
Bloschg 7 | 21 | 175 | 37036 | 161492 |
Bloschg 9 | 60 | 189 | 48283 | 210538 |
Bloschg 11 | 35 | 91 | 24765 | 107987 |
Bloschg 13 | 14 | 114 | 24047 | 104855 |
Geigerin 2 | 0 | 146 | 26965 | 117580 |
Geigerin 4 | 7 | 121 | 23897 | 104202 |
Geigerin 6/1 | 0 | 20 | 3405 | 14847 |
Geigerin 6/2 | 0 | 28 | 5029 | 21929 |
Georgsplz 3 | 20 | 97 | 22313 | 97295 |
Georgsplz 4 | 13 | 158 | 31655 | 138030 |
Heiligenstädterstr 331/1 | 2 | 44 | 8647 | 37703 |
Heiligenstädterstr 331/2 | 16 | 87 | 20361 | 88782 |
Heiligenstädterstr 331/3-4 | 3 | 136 | 26411 | 115163 |
Heiligenstädterstr 333 | 0 | 46 | 8431 | 36761 |
Heiligenstädterstr 335 | 0 | 34 | 5757 | 25105 |
Heiligenstädterstr 337 | 0 | 16 | 2713 | 11831 |
Heiligenstädterstr 351 | 39 | 104 | 28113 | 122585 |
Heiligenstädterstr 357 | 0 | 150 | 28658 | 124962 |
Heiligenstädterstr 359 | 18 | 39 | 10875 | 47421 |
Kuchelauer Hafenstraße 2 | 16 | 502 | 97844 | 426644 |
Waldbachsteig 1 | 0 | 27 | 4440 | 19361 |
Wigand 11 | 0 | 40 | 6880 | 30001 |
Wigand 22 | 0 | 104 | 17784 | 77546 |
Wigand 23 | 0 | 32 | 5346 | 23310 |
Wigand 27 | 0 | 148 | 27064 | 118012 |
Wigand 5 | 0 | 345 | 62316 | 271727 |
Wigand 7 | 0 | 41 | 7559 | 32962 |
Wigand 9 | 21 | 129 | 29379 | 128108 |
Summe | 294 | 3287 | 670219 | 2922463 |
Literatur zu PVT:
Photovoltaik-Solarthermie Hybrid (PVT) eine Einführung auf Englisch
es gibt bereits gute kommerzielle PVT Panels
Datei:EUWID CO² neutrale Quartierloesung mit PV-ISIETherm.pdf
Offene Fragen
- Borehole thermal energy storage (BTES) im Dörfl zur saisonalen Speicherung für Kühlen und Heizen
- Konduktive Verluste durch hohe Bodenfeuchtigkeit? Davon berichtet das Erwärmekataster nichts, aber es ist vielleicht zu ungenau.
- Konvektiven Verlusten durch Grundwasserflüsse in Tiefen <70m?
- Bodenbeschaffenheit bis auf 50-60m, um Kosten für das Bohren abschätzen zu können?
- Erwartete Kostenentwicklung beim Erdgas
- Öffentliche Förderung durch für BTES, Nahwärmenetz, passives Kühlen und Solarthermie und erwartete Entwicklung derselben
- Gibt es bereits Modellrechnung zur Ökonomie der Kombination aus Heizen und Kühlen mit kalter Nahwärme und BTES?
- Genehmigungen (falls die Wirtschaftlichkeit gegeben ist und die Finanzierung machbar erscheint):
- Zustimmung des Pfarrgemeinderates für die Erdstellung des Erdwärmesondenfeldes und eines Nahwärmetechnikhäuschens im Pfarrgarten
- Zustimmung des Stifts Klosterneuburg für die Erdstellung des Erdwärmesondenfeldes im Pfarrgarten
- Zustimmung des Stifts Klosterneuburg für die Errichtung der Pumpstation (und evtl. von 1-2 Pufferspeichern) im Pfarrgarten
- Genehmigung der Stadt für das Erdwärmesondenfeld (welche MA ist dafür zuständig?)
- Genehmigung der Stadt für den Bau eines Nahwärmetechnikhäuschens (welche MA ist dafür zuständig?)
- Genehmigung der Stadt für den Bau des Nahwärmenetztes (welche MA ist dafür zuständig?)